Lesson 6. Cylinders and Quadric Surfaces

1 In this lesson...

- Special families of surfaces in 3D space
- Drawing different types of surfaces in 3D space

2 Cylinders

- A cylinder is a surface composed of all lines that
- are parallel to a given line and
- pass through a given plane curve
- In 3D, if one of the variables x, y, z is missing from the equation of a surface, then the surface is a cylinder

Example 1. Sketch the graph of the surface $z=x^{2}$.

Example 2. Sketch the graph of the surface $y^{2}+z^{2}=1$.

Example 3. Sketch the graph of the surface $x y=1$.

3 Traces

- A trace of a surface is the curve of intersection of the surface with planes parallel to the coordinate planes
- Idea:
- Start with an equation in 3 variables x, y, z
- Plug in a value for one of the variables
- Graph the resulting equation in 2 variables (i.e., graph a trace of the surface)
- Repeat for other values and other variables
- "Glue" the traces together

Example 4. Use traces to sketch the surface $z=4 x^{2}+y^{2}$.

Example 5. Use traces to sketch the equation $x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$.

4 Quadric surfaces

- Ellipsoid

- Equation:
- All traces are ellipses
- If $a=b=c$, the ellipsoid is a sphere

- Elliptic paraboloid

- Equation:
- Horizontal traces are ellipses
- Vertical traces are parabolas
- The variable raised to the first power indicates the axis of the paraboloid
- Hyperbolic paraboloid

- Equation:
- Horizontal traces are hyperbolas
- Vertical traces are parabolas
- The case when $c<0$ is illustrated
- Cone

- Equation:
- Horizontal traces are ellipses
- Vertical traces are planes or hyperbolas

- Hyperboloid of one sheet

- Equation:
- Horizontal traces are ellipses
- Vertical traces are hyperbolas

- Hyperboloid of two sheets

- Equation:
- Horizontal traces (when $z=k$) are ellipses if $k>c$ or $k<-c$
- Vertical traces are hyperbolas
- Equations given above are in "standard form"
- May need to do some algebra to get an equation into standard form
- Equations given above are for surfaces that are symmetric about the z-axis
- May need to switch the variables around to match an equation with the surface type

Example 6. Sketch the quadric surface $z=y^{2}-x^{2}$. What is this quadric surface called?
Hint. Draw traces for this surface when $x=0, y=0, y=1$, and $y=-1$.

Example 7. Sketch the quadric surface $x^{2}+y^{2}-z^{2}=1$. What is this quadric surface called? Hint. Draw traces for this surface when $z=0, z=1, z=-1$, and $x=0$.

Example 8. Identify and sketch the quadric surface $2 z^{2}-4 x^{2}-y^{2}-4=0$ by matching the equation to the standard equations given above.

Example 9. Identify and sketch the quadric surface $2 y^{2}=x^{2}+4 z^{2}$ by matching the equation to the standard equations given above.

